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The luminance distribution of an average sky
PAUL J. LITTLEFAIR

Mr. Littlefair is with the Building Research
Establishment of the Department of the Environment,
Garston, Watford.

The paper was first received on 12 June 1981, and in
revised form on 14 October 1981.

Summary Daylight in buildings can save energy by reducing artificial
lighting energy consumption. An accurate estimate of internal daylight
availability is required for energy use predictions and to include the effect
of window orientation this must be based on an adequate model of sky
luminance distribution. For such energy calculations the ’average sky’
(based on measurements for a wide range of real skies) is recommended as a
replacement for the CIE overcast sky. This paper analyses luminance data
obtained by Wegner to show that the luminance distribution of an average
sky is of the form L = ae-by + c where y is the angle in degrees between
the sun and the element of sky under consideration, b is approximately
0.025 and a and c are functions of solar altitude alone, and, significantly, do
not depend on the altitude of the element of sky. Using this formula
together with a direct solar component the paper derives expressions for
horizontal and vertical illuminances, and the average illuminance inside a
side-lit room; and briefly outlines further work, under way at BRS, to
evaluate the model for weather conditions in the UK and to apply it to
problems of daylighting design.

1 Introduction

One of the ways energy can be saved in buildings is
through better use of daylight. Recent research at
BRE has concentrated on three important aspects
of this: predicting the energy savings due to
photoelectric controls’,’, predicting artificial
lighting use3, and optimising window size’*.
However, any attempt to quantify the energy
saving effects of daylight will require an accurate
estimate of the amount of daylight available. This
includes not just the total amount of light coming
from the sky (usually represented by the horizontal
illuminance outdoors), but also the way that light is
distributed over the sky vault. This luminance
distribution is important because a point in a room,
for instance, will only receive light from one
particular part of the sky.
The CIE overcast sky gives the idealised luminance
distribution for one particular type of weather
condition. It is useful for ’worst-case’ design studies
of daylighting in buildings, but its use for energy
related calculations is inappropriate because these
will need to include the effects of overcast, clear
and partially clouded skies, i.e. all weather
conditions. A mathematical produced at
BRE by Lçmdon (to standardise radiation work5)
and later modified by Lynes and Crisp’ provides a
more realistic form off distribution to
an over a wide of weather
conditions. Among other things this model of sky
luminance can predict the effect of the orientation
of the window walls in a building-an important
consideration ignored by present daylighting design
practice.

This paper develops the BRE model making use of
luminance data measured by Wegner7,8. It shows
how a simple extension of the BRE model can be
used to accurately predict the average luminance
distribution of a real sky and its variation with
solar altitude. The formula obtained is used to
predict the illuminance values on unobstructed
horizontal and vertical planes.
The work described forms part of a programme of
investigation aimed at providing practical daylight
design methods for predicting internal illuminances
on a more realistic basis than current practice
allows. Measurements of daylight availability on
vertical as well as horizontal surfaces are required
to adapt the model to UK conditions (Wegner’s
measurements were made in Berlin) and these are
being carried out at BRE. Simultaneous
measurement of internal illuminances under real
skies are being made and will be used to investigate
how the theory can be employed by designers for
prediction of interior daylight conditions.

2 The BRE daylight model

Fig, I shows the basis behind the BRE model.
Light from the sun sky is divided into three
components:
~I) t~ ’direct solar’ component comes directly
the sun;

(2) A ’circumsoiar’ component which comes from a
region around the sun;
(3) A ’background diffuse’ component, which is
assumed to be uniformly distributed over the whole
sky.

Lynes and Crisp justified this last assumption by
considering an ’average sky’ as the mean of a
succession of clear and overcast skies6, a technique
used more recently by Aydinii~. A clear blue sky
has a bright horizon and a darker zenith, while a
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Fig. 1. The BRE daylight model

fully overcast sky has a bright zenith and a darker
horizon. So a succession of clear and overcast skies

might, on average, have a roughly uniform
luminance distribution.

For components (1) and (3) it is quite easy to
calculate the illuminance on a horizontal or vertical
plane from the magnitude of the component itself.
Let S be the normal illuminance due to the direct
solar component in lux, and U the luminance of the
background diffuse component, in cd/rn~.

Then for a horizontal plane
illuminance due to the direct solar component
= S cos 0,
where 0. is the zenith angle of the sun
(85 ~ 90°) (Fig. 2) tl)
illuminance due to the background diffuse
component = 1r U (2)

and for a vertical plane
direct solar illuminance = S sin 0, cos OREI, (3)
where 4REL is the azimuthal angle between the sun
and the normal to the vertical plane ~ 90 

°

background diffuse illuminance = 1/2 r U (4)
regardless of the orientation of the vertical plane.
Formulae for the solar altitude and azimuth at a
particular day and time are given by Petherbridge10
and also by Lynes and Crisp6.
It is more difficult to calculate the effects that the
circumsolar component will have on horizontal and
vertical illuminance. The circumsolar zone can vary
not just in mean luminance, but also in angular
radius, and in the luminance distribution within the
zone. Lynes and Crisp’ overcame this problem by
assuming that the circumsolar component could be
amalgamated with the other two components. Light
C0fling a srna:4~- regi3p. the sun, of
angular radius than 30°, could be treated as
coming directly from the sun. The remainder (if
any) of the circumsolar light could be added to the
background diffuse component. Thus Equations 1-4
would then read

EH = (8 + ~~ Cs) cos 0s + r(U + Cu) (5)

Ev = (S + ~3~f sin ()s cos 4$REL + y 4~ -~ Cu) (6)

where Cs, Cu are the amounts of circumsolar light
added to the two components. OH and Ov are

functions of solar altitude and azimuth and correct
for cases where a plane does not receive light from
all the circumsolar zone (for a horizontal plane this
would be when the sun was low on the horizon).
Where a plane receives light from all the
circumsolar zone, (3 equals 1.

Equations (5) and (6), therefore, set the luminance.
of an average sky to a constant apart from a small
region around the sun. But is this really a valid
assumption to make? Although Crisp and Lynes
were able to fit horizontal illuminance data to this

simple model, values of horizontal illuminance alone
are not enough as any sky luminance distribution
(for example a point source at the zenith) can be
fitted to horizontal illuminance data. Crisp and
Lynes suggested the use of vertical illuminance
data (as yet unobtained) to provide a more critical
test of the model. Alternatively, what is required is
a large number of luminance measurements of
different parts of the sky, averaged over a
succession of real skies. Fortunately in 1968/9 such
measurements were made, by J. Wegner at the
Technical University of Berlin.

3 Wegner’s experiment

Wegner7. measured the luminance of the whole sky
over a year. His apparatus resembled a telescope;
an ingenious swivelling mechanism allowed it to
scan the whole sky in 30 minutes. Readings began
before sunrise and ended after sunset.

The data are presented in tables, one for each solar
altitude hs in 5 steps from 0 to 60°. The tables
give the average luminance of a patch of sky of
particular altitude h, and azimuth c~ relative to the
sun. The intervals in h and a are 60 and 2 °

respectively. Over the whole year some seven
million readings were made; so most of the
luminance values are the average of over two
thousand readings.
The main causes of error in each reading were
fatigue after the cell had been exposed to high light
levels and poor colour correction; Wegner quotes
five per cent for the error due to each of these. Other
errors arose because the meter could not record the

very high luminances close to the sun, and because
the weather in the year selected was not truly
representative of a longer period of climatic
conditions. This last error, according to Wegner,
was quite small. A fifth error was due to scattered
sunlight the apparatus, but Wegner does
not quote a value for this. All these errors are
discussed in reference 7.

However, because ~a~y~ ~ ~~~ in the tables
represents the average of a large number of
readings, its absolute error will probably be
somewhat less than ten per cent. It is hard to
calculate exactly how it will be because the
errors are systematic.
The tables of data are Tables 5a to 5m of Wegner’s
thesis 7. There is an English translation of this at
BRS. A summary of work is given in
reference 8, an English copy of which resides in the
BRS Library.
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Fig. 2. Angles used in the calculation

4 Analysis of the luminance data

~U~gner’~ tables gave the luminance of a patch of
sky of altitude h and azimuth relative to the sun a,
for a particular solar altitude hs (see Fig. 2). To
investigate the BRE model, however, we need to
know another angle-the angle y between the patch
of sky and the centre of the sun. This can be
calculated from the formula

cos y = cos hs cos h cos a + sin hs sin h (7)

which is obtained using spherical trigonometry&dquo;.
For a selection of solar altitudes, Wegner’s
luminance data were plotted against angle y. The
sky luminance appeared to depend only on y for
each particular solar altitude; no dependence on the
altitude of the patch of sky h was observed. The
only exception to this was for h = 6 (the lowest
value) when ground reflected light affected the
luminance values.

Moreover, the sky luminance appeared to fall off
exponentially as y increased. There was no
particular cut-off angle above which the sky
luminance became uniform.

A computer program was written to fit an
exponential curve to the data. It used a least
squares technique to fit a curve of the form

L = ae -by + c (8)
to the data. All of Wegner’s data points were used,
apart from those for which h = 6 (see above), and
for points very close to the sun. For these cases the
cell was exposed to very high direct solar luminances
which either produced high readings, or, because of
the cell cut-off, inordinately low readings. This
effect was worst for high solar altitudes, so the
curve-fitting routine ignored points for which y° °
< (5 + hs°/4). This value was selected by inspection
of the preliminary plots described earlier.

Using this program it was possible to fit a curve of
the form shown in Equation (8) to give an RIMS
error in luminance of better than five per cent for
most of the solar altitudes. Note that the right
hand side of Equation (8) represents two
components: a uniform sky component (c) and a
circumsolar component (ae -by).
4.1 Values of a, b and c

The best values of b (y measured in degrees) for
each solar altitude are given in Table 1.

Table 1. Best values off b for each solar altitude h,

The optimum b varies with solar altitude. As hs
increases b goes down, indicating a less steep fall-
off of circumsolar luminance with angle from the
sun y. This could be due to systematic seasonal
effects; for example higher solar altitudes would be
observed in the summer when less clouds would be
present. This in turn could give rise to less
attenuation of the circumsolar luminance over the
sky vault.

Despite this variation in the optimum values of b,
it makes only a small difference to the average
error in L if b is set to 0.025 for all solar altitudes
(see Table 2). A constant b simplifies illuminance
calculations (in Section 5) considerably, so b was set
to 0.025.

For b = 0.025 the best values of a and c for each
solar altitude are plotted in Figs. 3 and 4. a and c
both increase as solar altitude increases, as might
be expected; but a tends to a constant for large
solar altitudes. Empirical functions for a and c were
found to be

a = 0.0456 h, ,2 ~~hsl3~ + 0.27 kcd/m’ 2 (9)

c = 0.2 + 0.1 hs - 0.18 sin (10 hs) kcd/m’ (10)

hs in each case being measured in degrees. It should
be emphasised that these formulae have no
theoretical basis; in particular the ’sin (10 hs)’ term
in Equation (10) is inserted simply to provide
conveniently a better fit for c at low solar altitudes.
We can combine Equations (8), (9) and (10) to give a
complete empirical formula for average sky
luminance

L = (0.0456 hs 2e 
-h s /30 

+ 0.27) e -y!40 + 0.2

+0.1hs-0.18sin(10hs) (11)

n,

Fig. 3. Variation of a with solar altitude hs
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Fig. 4. Variation of c with solar altitude hs

Ftg-. ~. Graph of for solar altitude 10° °

~’~~. 6. ~~°~~h of L - _y solar altitude 30° °

Figs. 5 to 7 are graphs of luminance against ~~1~ ~
for representative values of solar altitude hs. One-
third of Wegner’s data points are represented by
crosses. The curves in the graphs are those output
by Equation (11).
The curves in general fit the luminance data very
well, except for the extreme solar altitudes of 0 °
and 600. One of the reasons for this is that

atmospheric conditions and diffusive effects will
vary with solar altitude, and so the value of b is not
constant as assumed earlier. Nevertheless even for
these solar altitudes the average (RMS) error in L is
within 11 per cent.

Table 2 gives these errors for each solar altitude,
and shows the effect each of the assumptions about
a, b and c has on the errors in the fit to the
luminance data. The errors quoted are standard
deviations

(of the form &horbar;&horbar; 
1n-1

~rror in luminan~e ~’ ~ 1~~ ~~~. cent)1..,¡ &dquo; (Error in luminance) 2 ¡ X 100 per cent)&horbar;&horbar; ~ luminance ~ )

5 Predicting horizontal and vertical illuminances

One of the drawbacks of the empirical formula in
Equation (11) is that it is based on data for Berlin
rather than Britain, where the climate and solar
position are different. Clearly measurements need to
be made in Britain as well. However it is very
difficult to make a large number of luminance
measurements; it is easier to measure illuminance
and an apparatus has been constructed at BRS to
do this. Because of this, and because most daylight
calculations are based on illuminance, it would be
useful to find out how horizontal and vertical
illuminance are related to solar altitude and
azimuth and the formula for luminance distribution.

5.1 Horizontal illuminance

Equation (8) gives
L = ae-by + c

and from this, with the addition of the direct solar
component, we obtain

EH = z fS sin h. + 1rC + a J ~os B sin 8 dO d~ (12)
0 0

where cos y = cos hs cos h cos a + sin hs sin h

(Equation 7))
The double integral depends only on solar altitude
and values for it are given in Table 3. The integral

.FY~. 7. Graph of for solar altitude 50° °
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Table 2. Average errors in luminance values for
the different assumptions

turns out to be almost exactly equal to
0.456 + 0.01 hs (hs = solar altitude).

Thus EH S sin hs + xc + aI (12a)

where .~ 0.456 + 0.01 h

and a, c are functions of hs (see Equations (9), (10))

5.2 Vertical illuminances

These are more complicated to calculate because they
depend not only on solar altitude but also on the
azimuthal angle ORFL between the sun and the
normal to the plane. The relevant equation is
Ev = S COS hs COS OREL G I OREL +

7(/2 !f/2

&horbar;+ a sin’O cos 0 d.8 do (13)
2 J J

-,,T!2 o

(GIORELI = I if )OREL) < 90°
= 0 if JORFLL > 90o

for if I OREL > 90o the sun cannot shine on the
plane and the solar component is zero).
A computer program was written to evaluate the
double integral ~J).

An approximate formula is

J = 0.21 + 0.31 x + 0.19 x’ (14)

where x = -cos 5 cos 1>REL + 1 sin hs
2 2

but this is less accurate (five per cent error for
some solar positions) than the corresponding
equation for horizontal illuminance-so it is
probably best to use Table 4. For computer work,
J can be expressed as a Fourier series in c~~~I,*. A
suitable series is

1000 J = (276 + 4h, - 0.04h~) + (257.5 + 4.17h, -
0.087h,’) cos (1)RErJ + (45.4 + 0.89h, - 0.087hs 2)
cos (21)REd + (-2.3 - 0.05hs + 0.001h,’) cos
(4 1>REd (15)

This formula is accurate to better than two per
cent.

6 Further work

Since Wegner’s measurements were made in Berlin
validation of the luminance model should be carried
out for British weather conditions. It seems
reasonable that the basic form of the average sky
luminance distribution will be similar.
Measurements in different places indicate that for
the extreme sky conditions, overcast&dquo; and clear&dquo;, 14,
the form of luminance distribution does not vary
greatly with geographical position. Also Berlin and
London have the same range of sky conditions (for
each month of the year the average cloud cover in
Berlin is within 10 per cent of that in London’-5, and
solar altitudes (only 1 ° difference in latitude).
However to provide a searching test for the
luminance model under British conditions, an
apparatus has been constructed at BRE to
continuously monitor illuminance

(1) on an unobstructed horizontal plane;

(2) on four unobstructed vertical planes facing
North, South, East and West;

(3) on a horizontal plane fitted with a guard ring
to eliminate the direct solar component;

(4) at six points inside each of four model rooms
facing North, South, East and West.

The results from this will be used to investigate the
daylight model. From the readings (1) and (2) it is,
*J. A. Lynes, private communication

’1i°~~~I~ 3. of iategrai 3 to? differsBit solar altit~~ies
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in theory at least, possible to derive the values of S,
a and c in the model. Equation ~12~ for the
horizontal plane, and Equation (13) for the four
vertical planes, give us five simultaneous equations
in three unknowns-S, a and c. These could be
solved using, for example, a least squares
technique.
In practice this is quite difficult. The matrix
produced by the least squares technique is in
general ill-conditioned--in other words small
changes in the illuminance values (which may be
caused by random errors in the measuring device)
may give rise to very large changes in the
calculated S, a and c.

There are, however, alternative approaches to this
problem. One way would be to average the
illuminance values over a very long period of time
(e.g. a year) in the hope that this would generate
more consistent values for S, a and c. A more
promising way is to use the illuminance values for the
horizontal cell with the guard ring as well. This
would give a sixth equation in a and c alone (the
guard ring removes the direct solar component S).
A third way would be to constrain one of the
components in some way. For example either a or c
could be replaced by Ka aBERLIN or Kc cBERLIN
where aBERLIN and cBERLIN are given by
Equations (9) and (10).
One obvious use for the model, once suitably
accurate values of S, a and c have been found for
England, is to predict internal illuminances. It
would not be too hard to modify existing daylight
factor computer programs to calculate point-to-
point internal illuminances under a sky with the
luminance distribution of Equation (8) and it would
be possible to use these values to help predict
lighting energy savings due to photoelectric
controls ~ . ~.

One recently proposed design tool is the average
daylight factor, which represents the average of a
series of daylight factors measured at points
throughout a room. Lynes16 and Longmore&dquo; have
both given formulae for this quantity, which can in
principle be used for daylight design in its initial
stages, for example in window sizing.
A similar approach for the ’average sky’ consists of
the calculation of average daylight illuminance.
(This represents an average both over all points in
the room, and over a range of sky conditions for a
particular solar azimuth and altitude). This
calculation can be carried out using the vertical
illuminance Ev derived in Equation (13), and
by Lynes&dquo; as follows:

Flux entering window ° Ev. T. W (16)

where T = transmittance of window

W = window area

Let Erin be the average illuminance on all the room
surfaces t.

Then flux striking indoor surfaces = ~;~,.~ (17)
where A is the total area of all indoor surfaces,
ceiling, floor, walls and windows.

flux absorbed by indoor surfaces = Ein.A (1&horbar;R)
(18)

where R = area-weighted mean reflectance of all the
surfaces.

Now the flux entering the room must equal the flux
absorbed.

.’. Ev.T.W = E;n A (1-R) (19)

which gives average indoor illuminance

- 
WTEy

htn &horbar; &horbar;&horbar;&horbar;&horbar;&horbar;&horbar;&horbar;&horbar; (20)tn 

A (1-R) 
~

substituting for Ev equation (13), we get
WT

~’’tn = (S (~C3S h~ cos OREL G(<PREd+
A (1-R)

TIC a J~2 c + a J) (21)2

So once we know how S, a and c vary with solar
altitude in Britain, we can calculate the average
daylight illuminance in a side-lit room for any
particular solar altitude and azimuth.

This method essentially multiplies the vertical
illuminance on the window plane by a factor which
depends on the properties of the room and not on
orientation or solar altitude.

It is, however, impossible to obtain a single figure
ratio corresponding to the traditional meaning of
average daylight factor (calculated using an
unobstructed horizontal illuminance) as this will
vary with solar position.

7 Conclusion

The main conclusion of this paper is that sky
luminance averaged, for several years, over a
succession of real skies can be represented by three
components

(1) a direct solar component, S,

(2) a uniform sky component, c, (whose magnitude
is a function of solar altitude hs) and

(3) a circumsolar component whose magnitude
varies as ae -by where y is the angle between the sun
and the patch of sky under consideration, and a and
b are functions of solar altitude alone.

Using this mathematical model as a starting point
it is possible for the first time to derive accurate
and relatively simple formulae for the average
on both horizontal and vertical
unobstructed planes, the average (over iirae
and space) illuminance in a side-lit room. It is also
in principle possible to calculate the time-averaged
illuminance at a point in a building. These
illuminances will vary with sun position and
orientation, so the concept of a constant daylight
factor is meaningless for the average sky model
proposed here. However the average sky model is
essential for energy use calculations because it
incorporates the full range of naturally occurring
sky conditions.
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